

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

COST REDUCTION OF FLOATING WIND TECHNOLOGY

> COREWIND: Improving competitiveness of floating offshore wind through cost-reduction Final event

corewind.eu

26 April 2023, 10:30-14:00 Copenhagen and Online

Welcome and Introduction

- Welcome to the COREWIND final event!
- For online participants: please mute your microphone. If any technical issue: do not hesitate to write directly in the chat.
- Questions can be asked on Slido. But for the audience in the room, do not hesitate to speak up!

Join at slido.com

Agenda

10:45-10:50	Enabling cost-reduction and increasing performance of floating wind: the COREWIND project	Jose-Luis Dominguez, IREC
10:50-11:00	Floating wind: which potential to help achieveing the Green Deal targets?	Enrico Degiorgis, European Commission, DG RTD
11:00-11:40	Part 1 - Efficient design and optimisation tools for Floating wind technologies and O&M strategies	Henrik Bredmose, DTU Valentin Arramounet, INNOSEA Siobhan Doole, JDR Cables Marie Schwarzkopf, RAMBOLL
11:40-11:55	Time for questions!	Moderated by Lizet Ramirez, WindEurope
11:55-12:05	Coffee Break	

Agenda

12:05-12:35	Part 2 - Experimential testing, final cost-reduction, life-cycle assessment and roads to exploitation	Raul Guanche García, FIHAC Victor Ferreira, IREC Bernd Neddermann, UL Solutions
12:35-12:50	Time for questions!	Moderated by Lizet Ramirez, WindEurope
12:50-13:25	Similar objectives, different findings? Discussion with AFLOWT and FLOATECH projects	Jose-Luis Dominguez, IREC Alessandro Bianchini, University of Florence (FLOATECH) Mareike Leimeister, Fraunhofer (AFLOWT) <i>Moderated by Lizet Ramirez,</i> <i>WindEurope</i>
13:25-13:30	What's next for COREWIND solutions?	Jose-Luis Dominguez, IREC
13:30-14:00	Join us for a networking lunch!	

The COREWIND project: in brief Jose Luis Domínguez García Head of Power Systems Group IREC - Institut de Recerca en Energia de Catalunya

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Project information

- Starting Date: 01/09/2019 Ending Date: 28/02/2023 → 31/05/2023
- Duration: 42 month → 45 months

• Project website and social media profiles:

corewind.eu

@corewindeu

https://www.linkedin.com/company/corewind/

Project introduction

- Provides disruptive and cost-effective solutions for floating offshore wind technology, leading to cost reduction, by developing innovative research, modelling and optimisation for floating substructure concepts.
- Research on the mooring and anchoring systems, power dynamic cables, O&M as well as digitalisation, standardisation and validation.
- **Objective: at least a 15% LCOE reduction** by the end of the project (i.e. 100€/MWh approximately) through disruptive technologies and procedures for floating wind sector; paving the way for achieving future cost objectives earlier (i.e. ≈ 80 €/MWh by 2040, 10 years ahead expectations).

2050

Project introduction

• With special focus on **2 concrete-based** floaters: WindCrete and ActiveFloat.

• Evaluated in **3 locations**:

	West of Barra	Canary Islands	Morro Bay
Water depth (m)	100	200	870
Distance to shore (km)	20	10	50

Normal Wind Profile			
Speed			
[m/s]			
9.50			
10.16			
10.97			
11.58			
11.74			
11.95			

Normal Wind Profile		
Height	Speed	
[m]	[m/s]	
10	9.83	
20	10.48	
50	11.33	
100	11.98	
119	12.14	
150	12.36	

Normal Wind Prof		
Height	Spe	
[m]	[m/	
10	6.	
20	7.	
50	8.	
100	9.	
119	10	
150	10	
	-	

Project partners and Advisory board

Project expected impacts and outcomes

LCOE reference: 127€/MWh (baseline for Bottom-fixed offshore wind from IEA Wind)

Upscaling – \downarrow BoP cost & \uparrow AEP (\downarrow 5% LCOE)

Shared Mooring, Anchors and Dynamic cables (↓ 3 - 5% LCOE)

BUT HAVE THEY BEEN ACHIEVED?

- - o1 BIM toolbox for floating wind industry
 - o1 Open and agnostic Digital Twin for floating wind
 - o1 O&M planning and assessment tool
- Economic tools:

LCOE

15%

Λ

JTJ IVIVV VVI IEIEIEIILE IIIUUE

○2 floater (semi-sub & spar) models

• Design and operation tools:

- o1 LCOE and LCA calculation tool
- Floating Wind Farm optimization modules for cost minimization

Where to find our results and outputs

- **Public Deliverables and other reports:**
 - o They can be found at: http://corewind.eu/publications/
 - scientific articles and papers)
 - **Public models (available under different CC licenses):** https://zenodo.org/communities/corewind/?page=1&size=20
 - UPC-WindCRETE OpenFAST Grand Canary Island
 - \bigcirc
 - Other locations under analysis if available
 - Scientific publication: on the COREWIND website.

• Zenodo platform: https://zenodo.org/communities/corewind/?page=1&size=20 (including)

COREWIND - ACTIVEFLOAT OpenFAST model 15 MW FOWT Grand Canary Island site

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Thank you!

For further questions, do not hesitate to contact me: Jose Luis Domínguez (jldominguez@irec.cat)

> Stay tuned and follow us for final news: Twitter inkedIn

Floating wind: which potential to help achieving the Green Deal targets?

COREWIND project – final event

Copenhagen - 26 April 2023

European Commission

Enrico Degiorgis

DG Research & Innovation Clean Planet Directorate Unit Clean Energy Transition Policy Officer

Recent EU policy and legislative developments

Net-Zero Industry Act (NZIA)

- Commission proposal for a regulation adopted on 16 March 2023 Onshore wind and offshore renewables identified among the 8 'Strategic Net-Zero
- Technologies'
- Strategic Net-Zero Technologies:
 - Objective: scale up manufacturing in the EU to provide at least 40% of the EU's annual deployment needs by 2030
 - Particular support measures (simpler and faster permitting, sustainability and resilience criteria in auctions, possibility to become Strategic Net-Zero Technology project)
- Net-Zero Technologies: One-stop shop, online access to info, faster permitting (12-18 months); Innovation - Regulatory Sandboxes; European Net-Zero Industry Academies

Recent EU policy and legislative developments

Renewable Energy Directive – revision

- Provisional agreement reached between the European Parliament and the Council to reinforce the EU Renewable Energy Directive (30 March 2023)
- EU's binding renewable target for 2030: minimum of 42.5% (up from the current 32%). With an additional indicative 2.5%
- Indicative target of 5% of new installed renewable energy capacity to be covered by **innovative** technologies at Member State level
- Accelerated permitting procedures, acceleration areas, overriding public interest

Recent EU policy and legislative developments

Critical Raw Materials Act

- Commission proposal for a regulation adopted on 16 March 2023
- List of Critical Raw Materials (CRM) and Strategic Raw Materials (SRM) is defined
- Towards more SRM supply security 2030 benchmarks
 - EU's extraction capacity cover at least 10% of the EU's SRM consumption
 - EU's processing capacity cover at least 40% of the EU's SRM consumption
 - EU's recycling capacity cover at least 15% of the EU's SRM consumption
- Towards more SRM diversification of supply 2030 benchmarks
 - Not more than 65% of EU consumption of each SRM should come from a single third country

To incentivise large-scale recycling of permanent magnets, the Act sets requirements on recyclability and recycled content.

EU countries will take measures to improve the collection of critical raw material-rich waste and ensure its recycling into secondary critical raw materials.

European Commission

Strategic Energy Technology (SET) Plan revamp

Three main **objectives**:

- as embedding the approach of REPowerEU;
- the activities, in order to maximize their impact.

Opportunity to give more consideration to matters of high priority in the light of REPowerEU (e.g. hydrogen, materials, circularity, digitalisation, empowerment of citizen and energy storage)

- both onshore and offshore (February 2023)
 - Terms of reference
 - Targets revision currently ongoing
- Communication of the Commission on SET Plan revamping most likely in autumn 2023
- SET Plan Conference (Viladecans Barcellona 13-14 November 2023)

Support the European Green Deal policies and strategies and make the SET Plan 'fit for 55', as well

Contribute to the ERA policy agenda and reinforce synergies with and between Member States;

Increase the participation of all countries in SET Plan activities and increase the political visibility of

Wind: Implementation Working Group (IWG) on offshore wind decided to expand its scope to cover

Technology readiness level of the main technologies in wind energy

Source: JRC, 2022

Note: Direct current (DC) technologies are mentioned as they are a key enabler for high offshore RES penetration rates

Projected wind energy capacities – scenarios (1)

Share of total electricity generation (2020): Onshore wind 13.7%; Offshore wind (1.7%); 14% overall in 2021 (385 TWh)

EU Offshore Strategy – 19 November 2020 60 GW by 2030, 300 GW by 2050 (offshore only)

- Fit for 55' package 14 July 2021
 - 469 GW by 2030

➢ <u>REPowerEU Plan</u> – 18 May 2022

• an increase by 16% as compared to CTP-MIX scenario

 $(\sim +41 \text{ GW/year over the period } 2023-2030)$

With respect to wind energy the REPowerEU Plan proposes an installed capacity of **510 GW by 2030**,

EU R&I funding – wind sector – 2009-2021

Figure 53. EC funding on wind energy R&I priorities in the period 2009 -2021 under FP7 and H2020.

EC funding for wind energy under FP7 and H2020 (EUR million)

Source: JRC, 2022.

EU R&I funding – wind sector – 2009-2021

Source: JRC, 2022.

<u>Horizon Europe – cluster 5 work programme 2023-2024</u> Wind – related topics (1)

- HORIZON-CL5-2023-D3-01-05 Critical technologies for the offshore wind farm of the Future (18M€ - 6M€/project – call closed on 30.3.23)
- HORIZON-CL5-2023-D3-02-14: Digital twin for forecasting of power production to wind energy demand (12M€ - 6M€/project – call opening: 4.5.23; call closing 5.9.23)
- HORIZON-CL5-2023-D3-02-15: Critical technologies to improve the lifetime, efficient decommissioning and increase the circularity of offshore and onshore wind energy systems (12M€ - 4M€/project – call opening: 4.5.23; call closing 5.9.23)

Search Funding & Tenders (europa.eu)

<u>Horizon Europe – cluster 5 work programme 2023-2024</u> Wind – related topics (2)

- HORIZON-CL5-2024-D3-02-08: Minimisation of environmental, and optimisation of socio-economic impacts in the deployment, operation and decommissioning of offshore wind farms (10M€ - 5M€/project – call opening: 7.5.24; call closing 5.9.24)
- HORIZON-CL5-2024-D3-02-09: Demonstrations of innovative floating wind **CONCEPTS** ($30M \in -15M \in /project - call opening: 7.5.24$; call closing 5.9.24)

Horizon Europe – work programme (WP) 2025 and following

- Adoption of the Strategic Plan 2025 2027: early 2024
- Work programme 2025:

 - Only urgent needs and continuity of some recurrent actions: early 2024 • Full WP in early 2025 – including 'politically sensitive' files • Topics drafting: likely to start in early 2024 – flexibility needed to consider
 - new College's priorities
- New College of Commissioners: end 2024

Exact procedure and timing still to be fully defined

EU funding for [offshore] renewables

- + Horizon Europe Cluster 5
- + EU Innovation Council
- + LIFE Clean Energy Transition sub-programme
- + European Maritime Fisheries and Aquaculture Fund
- + BlueInvest
- + Innovation Fund
- + Cohesion policy funds
- + Connecting Europe Facility Transport
- + Connecting Europe Facility Energy
- + InvestEU Fund
- + Modernisation Fund

Renewable Energy Financing Mechanism

- Overview of EU funding programmes relevant to finance offshore renewable energy projects
- Information about eligible investments
- Previously funded offshore projects
- How different EU programmes can be combined

Innovation Fund: small scale projects call currently open until 19.09.2023 Funding & tenders (europa.eu)

Accurate design of 15 MW floating wind turbines in farms Henrik Bredmose Professor DTU Wind Energy

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

15 MW turbines in farms – Reference material

4 Structural floater design

1 Reference floaters 15 MW

1: Two public 15 MW Floaters + 15 MW IEA WIND RWT (2020)

Made by NREL and DTU Wind

IEA WIND 15 MW RWT

Models publicly available at https://github.com/IEAWindTask37/IEA-15-240-RWT

Models publicly available at COREWIND H2020 project | Zenodo

Models publicly available at COREWIND H2020 project | Zenodo

1: Two public 15 MW Floaters - Key facts

- 240m rotor diameter
- 150m hub height
- Direct drive

https://github.com/IEAWindTask37/IEA-15-240-RWT

COREWIND H2020 project | Zenodo

Cobra

ActiveFloat

Concrete semisub Active ballast system Displacement 36.400 tonnes

- Concrete spar
- Monolithic structure
- Displacement 40.500 tonnes •

COREWIND H2020 project | Zenodo

2: Shared mooring analysis

[[corewind

- Morro Bay site (800 m depth)
- Taut mooring system
- Three design variants with shared anchor+line

2: Shared mooring analysis

- Morro Bay site (800 m depth)
- Taut mooring system
- Three design variants with shared anchor+line

- Additional natural modes
- Split-up and move of nat freq
- Watch out for 1P region

Gözcü and Bredmose (2022) COREWIND D1.4

2: Shared mooring – natural modes

Gözcü and Bredmose (2022) COREWIND D1.4

2: Shared mooring – time domain load analysis DLC6.1

Storm wave case with idled turbines

corewind

- Second-order wave force effects

3: Wake recovery and response behind floating turbines

Ramos-García et al (2022a,b)

3: Wakes in floating wind farms: Parametric study

- Effect of floater tilt
- Harmonic pitch motion
- Vary frequency and amplitude
- Non-trivial function of frequency

3: Wakes in floating wind farms: Power production

- Zero turbulence: Power of turbine 2 affected by motion of turbine 1
- Realistic turbulence: Effect seen at wave-range frequency

Ramos-García et al (2022a,b)

3: Wakes in floating wind farms: Wake-induced farm resonance

- 5 turbine farm
- 15 m/s

- Fore-aft resonance through wake
- Not at 8 m/s
- Hence control-related

Ramos-García et al (2022a,b) corewind.eu

4: Structural floater design: ActiveFloat mooring connection

4: Structural floater design: ActiveFloat mooring connection

- **Stress analysis**
- Fatigue
- ULS

4: Structural floater design - WindCrete

Fair lead connection

- Double fairleads
- Anchor plate
- Post tensioning bars

Yaw bearing at tower top

- Concrete tower
- Tendons for compression
- U-shaped steel ring
- Flat plate on top
- Bolted connection

15 MW turbines in farms – Reference material

4 Structural floater design

1 Reference floaters 15 MW

Publications – Deliverables and models

- (NREL).
- Trubat, Raúl Guanche.
- and Friedemann Borisade. Delivered April 2020.
- and Marco Belloli. Delivered March 2022.
- Guanche, Miguel Somoano, Maxime Chemineau, Siobhan Doole. Delivered March 2023.

- HAWC2 model of 15 MW RWT on Github
- FAST models of site B floater-turbine configurations on Zenodo

D1.1 'Definition of the 15 MW Reference Wind Turbine' Henrik Bredmose (ed), Jennifer Rinker, Witold Skrzypinski, Frederik Zahle, Fangzhong Meng, Katherine Dykes (DTU), Evan Gaertner, Garrett Barter, Pietro Bertolotti, Latha Sethuraman and Matt Shields

D1.2 'Design Basis' Fernando Vigara, Lara Cerdán, Rubén Durán, Sara Muñoz, Mattias Lynch, Siobhan Doole, Climent Molins, Pau

D1.3 'Public design and FAST models of the two 15MW floater-turbine concepts' Mohammad Youssef Mahfouz, Mohammad Salari, Sergio Hernández, Fernando Vigara, Climent Molins, Pau Trubat, Henrik Bredmose, Antonio Pegalajar-Jurado.

D1.4 'Methods for multiple floaters and dynamic cables at farm level" Ozan Gözcü, Stavros Kontos, Henrik Bredmose, Tom Bailey

D1.5 "Methods for nonlinear wave forcing and wakes" Néstor Ramos-García, Sergio González-Horcas, Antonio Pegalajar-Jurado, Stavros Kontos, Ozan Gözcü, Henrik Bredmose, Umut Özinan, Mohammad Youssef Mahfouz, Alessandro Fontanella, Alan Facchinetti

D1.6 "Design Recommendations and Impact of Mooring and Dynamic Cables Into Integrated Modelling and Structural Design", Pau Trubat, Climent Molins, Daniel Alarcon, Friedemann Borisade, Ozan Gözcü, Henrik Bredmose, Ignacio Romero, Diego Sisí, Raúl

Publications – Papers and public reports

Rinker, J., Gaertner, E., Zahle, F., Skrzypiński, W., Abbas, N., Bredmose, H., Barter, G., & Dykes, K. (2020). Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW Reference Wind Turbine. Journal of Physics: Conference Series, 1618(5)

Gaertner, Evan, Jennifer Rinker, Latha Sethuraman, Frederik Zahle, Benjamin Anderson, Garrett Barter, Nikhar Abbas, Fanzhong Meng, Pietro Bortolotti, Witold Skrzypinski, George Scott, Roland Feil, Henrik Bredmose, Katherine Dykes, Matt Shields, Christopher Allen, and Anthony Viselli. 2020. Definition of the IEA 15-Megawatt Offshore Reference Wind. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-75698. <u>https://www.nrel.gov/docs/fy20osti/75698.pdf</u>

MY Mahfouz, C Molins, P Trubat, S Hernández, F Vigara, A Pegalajar-Jurado, H Bredmose and M Salari (2021) 'Response of the IEA Wind 15 MW – WindCrete and Activefloat floating wind turbines to wind and second-order waves' (2021) Wind Energy Science 6(3) pp 867-883

M Y Mahfouz, T Roser, and P W Cheng, "Verification of SIMPACK-MoorDyn coupling using15 MW IEA-Wind reference models Activefloat and WindCrete" (2021) J. Phys.: Conf. Ser. 2018 012024

Ramos-García, N., Kontos, S., Pegalajar-Jurado, A., González Horcas, S., & Bredmose, H. (2022). Investigation of the floating IEA Wind 15 MW RWT using vortex methods Part I: Flow regimes and wake recovery. Wind Energy, 25(3), 468-504. https://doi.org/10.1002/we.2682

Ramos-García, N., González Horcas, S., Pegalajar-Jurado, A., Kontos, S., & Bredmose, H. (2022). Investigation of the floating IEA wind 15-MW RWT using vortex methods Part II: Wake impact on downstream turbines under turbulent inflow. Wind Energy, 25(8), 1434-1463. <u>https://doi.org/10.1002/we.2738</u>

Gözcü, O., Kontos, & Bredmose, H. "Dynamics of two floating wind turbines with shared anchor and mooring lines". Paper for Torque 2022 conference. IOP Journal of Physics: Conference Series Vol. 2265 No. 4 <u>https://doi.org/10.1088/1742-6596/2265/4/042026</u> corewind.eu

Contact: Henrik Bredmose, hbre@dtu.dk

Thank you for your attention!

Design and optimisation of station keeping systems Valentin Arramounet Technical lead Ocean Engineering team INNOSEA

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Studied aspects

(! corewind

- Mooring design automatize optimization tool
- Mooring design and optimization
- Technological benefits regarding peak loads reduction
- > Design at farm level: use of shared anchors, shared mooring lines
- General conclusions

Mooring design automatize optimization tool

Automatize mooring design and optimize procurement cost

Mooring design and optimization

Site A: West of Barra Procurement cost 5600 k€

Site B: Gran Canaria Procurement cost 3800 k€

Mooring design and optimization

Site B: Gran Canaria

Procurement cost 1300 k€

Site C: Morro Bay Procurement cost 1600 k€

Technological benefits regarding peak loads reduction

OrcaFlex 11.1a: DLC61-Ve50y-ptl-ww30n-n-tpmax-s3.sim (modified 15:23 on 12/08/2020 by OrcaFlex 11.0e) Time history: Line1_1 Effective tension at end A

Effective tension on upwind line at fairlead

OrcaFlex 11.1a: DLC61-Ve50y-ptl-www30n-n-tpmax-s3.sim (modified 11:48 on 12/05/2021 by OrcaFlex 11.1b) Time history: Line1_1 Effective tension at end A

Effective tension on upwind line at fairlead

Technological benefits regarding peak loads reduction

			Chain cost	Synthetic rope cost	PLRS cost	Peak load		
Site	Floater	System	diference (*)	diference (**)	increase (*)	reduction (*)	Total cost (k€)	Diference
A - West of Barra	ActiveFloat	1	-26.7%	+0.0%	+38.9%	-32.0%	5651.4	+1.5%
		2	-	-	-	-	-	-
	WindCrete	1	-	-	-	-	-	-
		2	_	_	_	-	-	-
B - Gran Canaria	ActiveFloat	1	-23.2%	-	+11.9%	-28.0%	712.8	-17.6%
		2	-25.2%	_	+20.1%	-24.0%	765.7	-11.5%
	WindCrete	1	-39.7%	-	+12.2%	-47.0%	813.7	-37.1%
		2	-32.6%	_	+13.4%	-45.0%	943.6	-27.1%
C - Morro Bay	ActiveFloat	1	-0.4%	+1.2%	+19.3%	+11.0%	1660.0	+19.8%
		2	+0.9%	+1.9%	+13.1%	+21.0%	2586.2	+16.5%
	WindCrete	1	-4.8%	-17.2%	+16.1%	-2.0%	1529.0	-5.8%
		2	-4.9%	-16.1%	+14.3%	-14.0%	1491.2	-8.1%

(*) (**) ()

in % of the total cost of the optimized mooring w/o PRLS nylon or polyester ropes, in % of cost of the optimized mooring w/o PRLS

Design at farm level: Shared anchors

Design at farm level: Shared anchors

Site B: Gran Canaria ActiveFloat

Site C: Morro Bay ActiveFloat

Design at farm level: Shared mooring lines

Conventional Shared anchors

General conclusions: Design strategies

- **Development of an optimization tool** •
 - Efficient to optimize systems driven by ULS in most cases
 - > Improve the overall strategy (quasi-static, frequency analysis, improve algorithm)
 - Add further costs (installation costs)
- Use of modal analysis to get tensions Identify natural frequencies and predict response
- Use of surrogate model for optimization Simplified model
- Use of machine learning to predict design parameters
- Tunning of the controller
 - > Encouraging results to reduce fatigue (Kp, Ki and fore-aft velocity)

General conclusions: Mooring and fairleads designs

- Use of peak load reduction systems
 - > Allow to reduce peak loads in the lines, allowing to reduce mooring size. Devices un-competitive for the moment.
- Use of shared anchors and shared mooring lines
 - \succ Important potential (costs reduction due to line reduction)
- Footprint reduction
 - Use of clump weight and act on pretension
- Use of synthetic lines instead of chain Should be investigated further (warning on FLS and modelling strategies)
- Fairlead design
 - Design based on optimize mooring system

General conclusions: O&M Strategies

- RoE from Oil&Gas industry
 - > Differences:
 - Anchor radius
 - Large number of FOWT
- Increase of potential failure modes
- vessels
- designer is a key to the success

Balance between decreasing number of lines and increase costs for installation

• Early engagement between installation engineering and foundation/mooring

Thank you for your attention!

Contact: valentin.arramounet@innosea.fr

Dynamic Cable Design Optimisation Joseph Allen Graduate Engineer JDR Cables

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

TOUCHDOWN MANAGEMENT & PRODUCT STABILITY PHILOSOPHY

PLATFORM CONNECTION & ANCILLARY HARDWARE

POWER TRANSPORTATION REQUIREMENTS (CURRENT & VOLTAGE RATINGS & LOSSES PHILOSOPHY)

Cable System Cost Influencers

> ENVIRONMENTAL LOADING & MARINE GROWTH & CLEARANCE

PROCUREMENT LENGTH (FROM FIELD LAYOUT) & MANUFACTURING PROCESSES

MOORED PLATFORM MOTIONS **& WATER DEPTH**

Overview of Cable System D Hang Off Α F

Cable system configuration options for touchdown solutions

LOW COST

No/Small platform offsets relative to depth

Limited depth based on current qualification limits & tensions

Larger offsets with mild environmental conditions

Limited by marine growth for shallow depths and environmental loading

Inclusion of tether to mitigate migration of touchdown point, restrain cable system within allowable movement envelope

HIGH COST

Lack of qualified field proven wet-mate technology available for high voltages but may be useful for detachable systems in the future

Recommended for floating platforms to control multiple cable approach, for example several FWT strings approaching an OSS

Key result 1 – Platform Offset influence on Costs

length required in the system

Total moored platform offset distances have a major influence on the cable

Key result 1 – Platform Offset influence on Costs

- Why do platform offsets matter?
 - > Maximum platform offset dictate cable length required for a pliant system, and therefore the cable length that must be accommodated in the water column when platform shifts to the near condition
 - > This becomes acute in shallower water sites where water column envelope is limited
 - greater than 10% of water depth, it becomes increasingly challenging to find a solution up to ≈30% of water depth, provided conditions at the surface are not onerous, however costs increase with these large excursions
 - > For platform horizontal offsets greater than 20% of water depth, and vertical offsets > The maximum platform excursions a cabling system may be designed to tolerate may be
 - > Limiting platform motion can reduce cable costs significantly so recommend moored platform and cable system are designed iteratively together upfront - study for Site B suggested ≈15% of water depth was optimal for CAPEX reduction

Key result 2 – Marine growth is a critical influencer on Costs

conditions

Far platform offset requires pliant length in both SOL (installed) and EOL (+MG)

Key result 2 – Marine growth is a critical influencer on Costs

cable length in platform's near offset

Clearance limits constrain water column available to manage resulting

Key result 2– Marine growth is a critical influencer on Costs

- Why do Marine Growth and Clearance limits matter?
 - > Predict marine growth on cable surface as accurately as possible, as conservative assumptions may lead to unnecessary cable & hardware requirements:
 - > May require additional cable length in system to retain pliant wave
 - > High drag can result in greater lateral motion of cable system, which influences platform connection loading and touchdown migration risk and hardware design to mitigate (i.e. tether)
 - > Added weight increases tension to the cable system, increasing risks and cable design requirements
 - > More challenging to fit SOL + EOL cabling within the water column, especially in shallow water where clearance limits are large.
 - > Clearance limits should be reviewed specifically for when vessel may be present (e.g. during some FLS cases, but unlikely to be present during ULS/ALS conditions) to minimize influence on cable system requirements to reduce system costs

Key result 3 – Cable Connection to the platform

hardware

Where platform motion is dominant (over wave and current influence), optimising configuration through exit angle studies (supported by buoyancy module adaptation) can lead to greater cost reduction of overall bending

Key result 3 – Cable Connection to the platform

should be considered with installation plans

corewind

Connection point for platform minimize motion induced in the cable, but

Key result 4 – Hardware Optimisation studies

- Detailed sensitivities to review and develop buoyancy designs with suppliers can reduce costs of hardware
- Buoyancy spacing optimisation studies can reduce costs of hardware
- Tether clamp and buoyancy module joint optimisation studies can reduce hardware costs of both types of hardware
- Multiple designs of buoyancy modules can reduce overall costs of hardware if positioning is optimised

Key result 4 – Optimisation studies (buoyancy, etc)

limits

Buoyancy and tether solutions should be developed together to optimise and reduce costs of hardware requirements on the system and avoid exceeding cable

Conclusion

- - Accurate marine growth specified relative to water depth
 - Limited moored offsets relative to water depth
 - Seabed and Sea surface clearance levels bespoke to FLS and ULS conditions
 - Careful consideration of cable connection position vs. connection/disconnection requirements
 - Detailed upfront optimisation studies for hardware interaction, standardisation and reduction of requirements
- Next steps / Topics that could be further investigated:
 - Non-touchdown solutions for deeper water applications
 - Non-standard shallow water solutions for larger platform offsets

> More detailed evaluations of turbine reaction on platform motion influencing imparted motion into cable system and associated fatigue

Significant cost reduction seen for dynamic cable configurations which consider:

Thank you for your attention!

Optimization of floating offshore wind O&M strategies and installation techniques Marie-Antoinette Schwarzkopf Senior Consultant RAMBOLL

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Work Package 4: Optimization of floating offshore wind O&M strategies and installation techniques

Objectives

- Identification of floating-wind-specific O&M requirements w.r.t. access and major component exchange strategies, workability and other technological aspects.
- Development of floating-wind specific O&M strategies and of a cost and availability model ||.
- Assessment of the cost reduction potential through optimized floater-specific O&M strategies and technological innovations, such as condition monitoring to support the maintenance strategy.

UPC

- Operation and Maintenance Strategy Development and Optimization
- > Comparison of major component exchange strategies
- > Effect of structural health monitoring technologies on OPEX
- > Installation strategy, duration, and weather windows

Operation and Maintenance Strategy Development and Optimization

Preliminary Studies

Heavy Lift Operation Requirements

Tow-in Operational Limits

Workability and Transportability Limits

CTV and SOV Accessibility Limits

Resource costs, distances, fuel consumption, vessel fleet composition, reliability parameters, durations, weather prediction, availabilities, durations, ...

Aim: Site and marine spread specific strategy optimisation and OPEX modelling

Optimisation

Outcomes and Recommendations

Time-based OPEX modelling & Strategy Optimization

Optimized Resources, OPEX and Availability

Model Assumptions:

Operation and Maintenance Strategy Development and Optimization

Floating-to-Floating (F2F) Scenario:

Approach: Time-domain OrcaFlex simulations (≈3000) with variations of vessel, orientation, Hs, Tp, direction

Results: Operational limits based on relative motions and compensation requirements (relative vertical velocity)

Operational conditions Hs									
Operationa	I CONULTIONS	0-1 1-2 2-3 3-4 4-5 5-6 6-7							7-8
	0-2								
	2-4								
	4-6								
	6-8								
	8-10								
тр	10-12								
IF	12-14								
	14-16								
	16-18								
	18-20								
	20-22								
	22-24								

Tow-In Scenario:

Approach: Frequency- and time-domain simulations using ANSYS AQWA to assess weather limits

Results: Operational limits based on motion criteria

Operation	al conditions	Hs							
Operationa		0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8
	0-2								
	2-4								
	4-6								
	6-8								
	8-10								
тр	10-12								
IF	12-14								
	14-16								
	16-18								
	18-20								
	20-22								
	22-24								
									COre

Operation and Maintenance Strategy Development and Optimization

Workability and Transportability:

Approach: Post-processing of motion signal to assess its effect on Human Comfort (e.g. sea-sickness)

Results: Transportability and Workability limits on the vessel and Floater

Source: https://mechanicalelements.com/trailer-attitude-pitch-yaw-roll

Accessibility of CTV

Operational conditions		Hs									
Operationa		0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8		
	0-2										
	2-4										
	4-6										
	6-8										
	8-10										
тр	10-12										
IP	12-14										
	14-16										
	16-18										
	18-20										
	20-22										
	22-24										

Accessibility for CTV and SOV:

Approach: Frequency domain post-processing of coupled RAO signal for different sea states

Results: Operational limits based on motion criteria

Tow-to-port

Floating-to-Floating

Self-hoisting/mounted Crane

Aim: Comparison of the Floater Tow-In to harbour to the in-situ component exchange with a Floating Crane Vessel

Production-based Availability

Aim: Comparison of the Floater Tow-In to harbour to the in-situ component exchange with a Self-Hoisting Crane

OPEX / MW / year

Tow-in

Self-hoisting crane

Production-based Availability

- study
- conditions, however in harsher conditions the tow-in operation was reduce downtime and costs

• Major Cost driver for F2F are dayrates and mobilisation costs of the floating crane vessels, thus vessel price fluctuation could change the outcome of the

• As the durations of the operations were similar for tow-in and in-situ solutions, the self-hoisting crane did not prove more efficient under favorable weather significantly hindered, allowing the self-hoisting crane to prove a potential to

Effect of structural health monitoring technologies on OPEX

Assumptions on the SHM system

- Alarm is triggered for
 - Mooring line dislocation and twist
 - Mooring line breakage
 - Anchor dislocation
 - Anchor loss
- "ideal" functioning of the system —
- System downtime has been neglected

Effect of SHM on O&M Phase

- Knowledge gain on the status of the asset
- Interval between maintenance activities can be reduced (risk-based approach)
- The timely detection and proper calibration of technologies enable prompt action on alarms indicating potential failures, preventing functional failure from occurring.
- Long vessel lead times will be reduced due to early failure detection Lower vessel prices for due to longer planning time of marine interventions

Effect of structural health monitoring technologies on OPEX

Quantification of the effect of SHM systems on the O&M phase

The monitoring of the station keeping system allowed a reduction of 15% (11.500 €/MW/year) of the OPEX in the studied scenario.

Installation strategy, duration, and weather windows

- Operational limits and vessel requirements were established through detailed calculations

Work Breakdown was iteratively optimized to reduce weather downtime and increase workability

Installation results

Challenging weather conditions (swell, Hs) leading to lower workabilities compared to Western Europe and APAC with weather downtime compared to campaign duration of ~60 – 80%

Overall Campaign	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
Workability: P10	42%	41%	42%	47%	53%	56%	70%	77%	72%	65%	48%	46%
Workability: P30	33%	32%	31%	38%	44%	47%	64%	70%	64%	53%	40%	32%
Workability: P50	26%	24%	24%	30%	35%	40%	58%	63%	58%	44%	31%	23%
Workability: P70	17%	14%	16%	22%	27%	33%	53%	56%	52%	36%	22%	17%
Workability: P90	7%	1%	3%	9%	12%	21%	32%	43%	40%	23%	7%	6%

Critical marine operations: Anchor installation and hook-up less impacted by bad weather than the mooring pre-lay and cable installation

Exemplary Overall Installation Campain for Morro Bay (Starting: January, @P50)

corewind.eu

31-Dec-24

. . .

Conclusion

- passages for reliable calculations.
 - maintenance.
- The accessibility limits of the vessel turned out to be more decisive than the workability limits for the technicians on the 15 MW wind turbine
- No clear strategy preference for major repairs: offshore onsite vs. tow-in to be evaluated in case-to-case studies
- clusters

• Seasonal varying metocean conditions highly impacted the weather downtime at Morro Bay emphasising the importance of accurate metocean data for all sites and

> Affecting Installation, Accessibility, Major Component exchange, and day-to-day

• Trend towards risk-based inspections and extrapolation of findings to wind turbine

Thank you for your attention!

Contact: Marie-Antoinette Schwarzkopf marie.schwarzkopf@ramboll.com Senior Consultant at Ramboll Deutschland GmbH

Join at slido.com #COREWIND

Time for questions!

Coffee break Well be back at 12:05

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

FOWT Experimental testing: lowering engineering risks towards a full commercial scenario Raul Guanche R&D Group Manager Offshore Engineering and Ocean Energy IH Cantabria

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

corewind Innovations

Floater + Mooring + Power Cable + Wind Turbine

- **Objectives** :
- ✓ To deepen into coupled testing techniques to evaluate wind-turbine control impact.
- ✓ To understand mooring and power cable dynamics under different loading conditions.
- ✓ To validate innovations proposed by COREWIND project.
- ✓ **To generate opensource experimental benchmarking database** leverage the development of coupled numerical models

Mooring and cable performance

Large scale wave flume

нcantabria

Marine Corrosion Test Site

MCTS EL BOCAL

Testing facilities

Coupled FOWT dynamics

Large scale wave basin

Large scale wind tunnel

corewind

Mooring and power export cable dynamics

+400 forced oscillation tests have been conducted, recording simultaneously tensions and novel tracking images.

Elastic materials have allowed us to replicate nylon mooring axial stiffness and cable axial-bending stiffness.

: IH cantabria

Importance of elasticity over mooring line extreme peak loads: Elastic mooring lines evidenced quasi-static performance in comparison with the highly nonlinear dynamics of conventional

catenary lines.

Mooring and dynamic cable experimental analysis

Barriers faced:

- Cable mechanical properties
- Cable layout

Outcomes

- Detailed power dynamic database
- Lazy wave dynamics under realistic fairlead movements

Mooring and dynamic cable experimental analysis: KEY OUTCOMES

- a) Improved understanding of chain-nylon mooring **lines** and power cables dynamic behavior can optimize floating offshore wind structures.
- b) Identification of mooring snap loads in chain-nylon mooring lines evidencing the damping effects over the peak mooring line loads
- c) Development of methodology for reproducing bending stiffness in cables can be applied to other components of floating offshore wind structures: +25 materials have been characterized!
- benchmarking d) Generation source of an open database for numerical modeling calibration and validation.

Importance of irregular bathymetry over mooring line loads estimation (all chain case):

- The contact point with the sea bottom have an strong influence over dynamic/snaping loads

In a quasistatic performance, the maximum load observed does not change from flat bathymetry to irregular bathymetry.

Coupled FOWT dynamics WINDCRETE

WINDCRETE test requirements and plan \rightarrow Scale 1/55

ACTIVEFLOAT test requirements and plan \rightarrow Scale 1/40 +135 tests has been carried out

ACTIVEFLOAT

Coupled FOWT dynamics: Hardware in the loop methodology

Wind turbine simulation

• Trust mean error: 0.16 N (< 3% of target Thrust)

Wind turbine simulationTurbulent wind : Error < 6% wind energy spectra

Fully coupled system:

Wind+Waves+Currents Hydrodynamics + Turbine performance

Coupled FOWT dynamics: WINDCRETE

Irregular wave, currents and wind test – Hs 5.11 m Tp 9.0 sec – cu 0.143 m/s – WS 10.5 m/s

	unit	mean	min	r
surge	m	8.29	3.68	1
Sway	m	1.38	-7.88	1
heave	m	-2.06	-3.07	
roll	deg	0.45	-0.95	
pitch	deg	4.39	2.18	e
yaw	deg	1.07	0.42	
Acc X	m/s ²	0.00	-1.48	
Acc Y	m/s ²	0.00	-0.65	(
Acc Z	m/s ²	0.00	-0.15	(
			-	

Coupled FOWT dynamics: WindCrete

Limit for	Acceptance Crit.	WINDCRETE
	OPERATION	
Yaw (10 min. max)	<15º	1.65º 🗸
Yaw (10 min. std)	<3º	0.15º
Pitch (max.)	[-10.0º, +10.0º]	6.73º
Pitch (10 min. average)	[-5.0º, +5.0º]	3.93º
Roll (max.)	[-5.0º, +5.0º]	1.49º 🗸
IDL	ING CONDITION	
Pitch (10 min. average)	[-5º, +5º]	4.38º
Pitch (10 min. max)	[-15º, +15º]	6.33º
ACCE	LERATIONS LIMITS	
Operation (acc. XY / acc. Z)	2.94 m/s2 (0.3 g)	0.98 m/s2 🗸
Survival (acc. XY / acc. Z)	4.41 m/s2 (0.45g)	1.74 m/s2 🗸

WindCrete: Wave - Current - Wind test (FIH18-00014-WC2-JS-H5p11-T9-G1p2-SN0p143-WDT10p5-TCNTM-23Hz-00): $H_s = 5.11$ (m) - $T_p = 9$ (sc) - Dir = 0 deg // Cu = 0.1 (m/s) // Wind=10.5 (m/s) // h = 165 m (prototype)

Surge(m)

f(Hz)

Coupled FOWT dynamics: ACTIVEFLOAT

Irregular wave, currents and wind test – Hs 5.11 m Tp 9.0 sec – cu 0.168 m/s – WS 10.5 m/s

unit	mean	min	r
m	39.27	33.25	4
m	3.27	-14.49	2
m	0.25	-1.24	-
deg	0.54	-0.20	-
deg	-1.45	-5.43	2
deg	1.22	-6.70	Ç
m/s ²	0.00	-0.77	(
m/s ²	0.00	-0.41	(
m/s ²	0.00	-0.58	(
	unit m m deg deg deg deg m/s ²	unitmeanm39.27m3.27m0.25deg0.54deg-1.45deg1.22m/s²0.00m/s²0.00	unitmeanminm39.2733.25m3.27-14.49m0.25-1.24deg0.54-0.20deg-1.45-5.43deg1.22-6.70m/s²0.00-0.77m/s²0.00-0.41m/s²0.00-0.58

Coupled FOWT dynamics: ACTIVEFLOAT

Limit for	Acceptance Crit.	ACTIVEFLOAT									
OPERATION											
Yaw (10 min. max)	<15º	12.52º									
Yaw (10 min. std)	<3º	2.749									
Pitch (max.)	[-10.0º, +10.0º]	-8.03º									
Pitch (10 min. average)	[-5.0º, +5.0º]	-2.12º									
Roll (max.)	[-5.0º, +5.0º]	0.99º									
IDL	ING CONDITION										
Pitch (10 min. average)	[-5º, +5º]	-1.45º									
Pitch (10 min. max)	[-15º, +15º]	-5.43º									
ACCE	ACCELERATIONS LIMITS										
Operation (acc. XY / acc. Z)	2.94 m/s2 (0.3 g)	0.89 m/s2 🗸									
Survival (acc. XY / acc. Z)	4.41 m/s2 (0.45g)	0.93 m/s2 🗸									

ActiveFloat: Wave - Current - Wind test (FIH18-00014-AF3-JS-H5p11-T9-G1p2-SN0p168-WDT10p5-TCNTM-26Hz-00): $H_s = 5.11$ (m) - $T_p = 9$ (sc) - Dir = 0 deg // Cu = 0.1 (m/s) // Wind=10.5 (m/s) // h = 120 m (prototype)

Coupled FOWT dynamics: Wind tunnel tests – Hardware in the loop

	POLIMI		FI	FIHAC		
U [m/s]	T _n [s]	ξ[-]	T _n [s]	ξ[-]		
-	32.98	3.73	22.50	2 / 2		
_	30.95	4.27	32.50	5.43		
BR	30.20	5.69				
AR	29.33	7.45				
	•		•	corev		

Conclusions

Thanks to the **COREWIND** project:

A set of innovations dealing with floater, mooring and power export cable have been validated experimentally

Testing methodologies have been leveraged to reduce uncertainties and enhance FOWT designs

 Hi-detail experimental databases are available for numerical modeling calibration and validation leading towards reduced extrapolation uncertainties.

ERA DeepWind'2021 IOP Publishing		Proceedings of the ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering
umal of Physics: Conference Series 2018 (2021) 012036 doi:10.1088/1742-6596/2018/1/012036		OMAE2022 June 5-10, 2022, Hamburg, Germany
		OMAE2022-79834
ncertainties assessment in real-time hybrid model for ocean	EXPERIMENTAL ANALYSIS OF MOORING AI ELASTIC STF	ND POWER CABLE DYNAMICS WHEN USING RING MODELS
asin testing of a floating offshore wind turbine		
Miguel Somoano ^{a,*} , Tommaso Battistella ^a , Sergio Fernández-Ruano ^a and Raúl	M. Somoano IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria 39011 Santander, Spain	D. Blanco IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria 39011 Santander, Spain
Guanche ^a	Email: miguel.somoano@unican.es	Email: david.blanco@unican.es
^a IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria. Isabel Torres 15, PCTCAN. 39011 Santander, Spain	A. Rodríguez-Luis IHCantabria - Instituto de Hidráulica Ambiental	R. Guanche IHCantabria - Instituto de Hidráulica Ambiental
*E-mail: miguel.somoano@unican.es	de la Universidad de Cantabria 39011 Santander, Spain Email: <u>alvaro.rodriquezluis@unican.es</u>	de la Universidad de Cantabria 39011 Santander, Spain Email: <u>raul.quanche@unican.es</u>
Abstract. This work analyses the accuracy of large-scale experimental testing procedure in ocean basin facility involving real-time hybrid model testing (ReaTHM) techniques. The analysis is based on a scaled concept for a 15MW floating offshore wind turbine (FOWT) supported by a concrete semi-submersible platform (<i>ActiveFloat</i>) developed within the framework of the project <i>COREWIND</i> . The real-time hybrid model considered includes a multi-fan system located at the aero-rotor interface, which permits to generate the aerodynamic loads, reducing the limitations typically given by scaled problems. In order to assess the uncertainties in the hardware in the loop (HIL) implementation, firstly we define the quantities of interest to be evaluated from all the possible sources liable to inaccuracy identified. Then, we quantify the systematic and random discrepancies of the selected mooring, platform and HL parameters. Finally, we propagate the previously quantified errors, running simulations in <i>OpenFAST</i> under extremal and severe environmental load cases in Gran Canaria Island (Spain) site. Comparing the platform response and mooring tensions of these uncertainty propagations with the ones of the unperturbed simulation as a baseline case, we analyse the effect of each representative parameter. Thus, the reliability of the results in ocean basin testing is numerically assessed, depending on the design load case.	ABSTRACT This work analyses the mooring and power cable dynamics in large-scale experimental tests carried out in the wave- current-isumani flume (COCOTSU) facility at II/Cantabria. The analysis is based on scaled elastic string models for a single chain-nylon mooring line and the dynamic cable of a 15MW floating offshore wind turbine (FOWT) supported by a concrete semi-submersible platform (ActiveFloat) in Gran Canaria Island (Spain). Both scaled concepts in the 100 m deep site are developed within the framework of the project COREWIND. All the test campaign is planned to be fully monitored; hence two overlapped video cameras register the line kinematics while the tensions are recorded in its two extreme points. The most difficult characteristic to fix in an elastic material at laboratory scale is the combined reproduction of axial and banding stiffnars. On the one hand, to replicate the real oxial	fairlead or power cable connector movements in surge. An initial tension-deformation test is followed by 28 combinations of harmonic excitations with two origins, two amplitudes and seven periods, and 11 irregular time series obtained from the resulting surge displacements of the platform when simulating in OpenFAST extreme and severe Design Load Cases 1.3, 1.6 and 6.1. Experimental data obtained are stored in an online repository to make it freely available to the wind energy sector. The ambitious reduced scale tests proposed provide enough cases to deliver a benchmarking database for numerical models calibration including forces at anchor and fairlead, as well as line shape. Keywords: Elastic mooring; Nylon mooring; Dynamic cable; Lazy-wave cable; Bending stiffness; Offshore wind turbine; Floating wind turbine.
	ore info:	
		https://
		https://

		11	X					
	Contents lists availa	able at ScienceDirect	DEEAN					
	Ocean En	gineering	10.00					
ELSEVIER	journal homepage: www.e	sevier.com/locate/oceaneng						
Simulation of moor method Paula Desiré®, Álvaro R	ring Lines in complex bath odríguez-Luis ^b , Raúl Guanche ^{b,}	nymetries using a finite element	Check Tar Vectoria					
^a Universidad de Cantabria, Av. de los (^b Environmental Hydraudics Institute, Un	Castros, 39005, Santander, Spain itversidad de Cantabria, Avda. Isabel Torres, 15, Parq	ue Científico y Tecnológico de Cantabria, 39011, Santander, Spain						
ARTICLE INFO	ABSTRACT							
Projestan Agartha Manintal andri Naninte demont nethod	television ference for segmentation is experimental and the second segmentation of the Ten method is based on con- using the vertex normal area were the computational (con reduc- ted from 1 finks, heading of the work of the second second second second order static approaches which the model was successful about the second second second second order static and dynamic reg were imposed in the dynamic fields, based on the second second second fields of the second second second second fields of the second second second second second second second second second second fields of the second second second second second second second second second second second second second second methods and the second second second fields of the second seco	This paper presents a new in method for the modeling of the sub-ful interaction of movering lines in complete hadrymetrics hown as "continuous projections methods" in the method is take but coinciding granul cancelland it captures additional non-linearities on the movering line performance due to asched interaction. The method is howed to constructing a triangulation for the sub-fuel and projections. For the sale of sub-fuel is the sub-fuel state of the sub-fuel and projection moving line modes by using the vertex source of each triangle, muscling the continuity of the projection. For the sale of the four is that, included or horizontic a pairies to along respectives expections in constitutions of the projection method because the sub-fuel projection expections in a sub- ted form in the sub-fuel state of the sub-fuel projection expections in a sub-fuel state of the sub-fuel projection expections in the sub-fuel projection method because the sub-fuel projection expections in a sub-fuel state of the sub-fuel projection expections in a sub-fuel state of the sub-fuel projection expection is also also sub-fuel state of the sub-fuel projection expections in a sub-fuel state state and the sub-fuel projection expections in a sub-fuel state state and sub-fuel state state state and sub-fuel state state state and state state state and state states are also state states and states the sub-fuel state states and states the sub-fuel state state states are also states that and sub-fuel shaft state states are colorer in all states the sub-fuel states the sub-fuel shaft states are sub-fuel shaft states the sub-fuel shaft states that and split states the sub-fuel shaft states that and sub-fuel states the sub-fuel shaft states the sub-fuel shaft state states are sub-fuel shaft states and states that and states the sub-fuel shaft states are sub-fuel shaft states that and sta						
 Introduction Wave and wind power are emergy source. In fact they are an be highly exploited in deeping structures secured by mooperformance of the mooring sia loss of the devices. Mooring connected to a point close to in a floating platform. These I that mostly occur when the moo This behavior is commonly reference. 	called to become a renewable and clean c currently a global interest topic. Eoch water areas by the installation of float- ring systems. Therefore, an anonalous system could result in a damage or even il lines are anchored to the stabled and the sea surface called fairleda, located ine need to withsmuch high pack loads oring line slacks and thes is reightneed. rered as snap-slack or snap loads. Studies	in Norway (Rollien et al., 2013) showed that caused an excess load on mooring lines, product caused an excess load on mooring lines, product also increase the fulgue dismage of the line. Accor complete dynamics of the mooring cause a word poul result in cost saving, and numerical simulations of the observation of the mooring cause of the observation of the fullue element, and Montoo worked with linear full elements, and Montoo mented Continuous Galerkin method in their word	ynamic snap loads go ene of the most ddition, snap loads ately predicting the ble failures and will rovide a useful tool cloped for moorings and Fossen (2000) et al. (2007) imple- t. In addition, Palm					
 Corresponding author. E-mail address: guancher@ur 	nican.es (R. Guanche).							

org/record/7794406#.ZDVMC3ZByUl https://zenodo.org/record/7794289#.ZDVMAnZByUI

Thank you for your attention!

Contact: raul.guanche@unican.es

Insight into LCOE and LCA analysis of concrete-based floating substructures Víctor José Ferreira Senior researcher in LCA and LCC for energy technologies IREC – Institut de Recerca en Energia de Catalunya

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Outline

- LCOE analysis and Life Cycle Assessment (LCA)
- Reference scenarios
- Developments carried out to upgrade FowApp
- LCOE and LCA baseline results
- Innovations and optimisations for cost reduction
- Optimised LCOE and LCA results
- Main outcomes
- Beyond COREWIND

LCOE Analysis & Life Cycle Assessment (LCA)

As part of the research of the project, enhancement of an existing tool called FOWAT was carried out. FOWAT was developed in the LIFES 50+ project to perform an LCOE analysis and simplified LCA. To this end, outputs from other technical developments through the project were considered, based on a holistic and comprehensive approach, to obtain estimated LCOE and LCA results integrated into the new tool for distinct concrete-based floating substructure scenarios, different met-ocean conditions and different locations. In addition, the potential LCOE reductions achieved by considering economies of scale is considered.

- Methodological framework development
- Preliminary LCOE and LCA estimations of reference scenarios
- CAPEX, OPEX and LCOE review after optimisation for cost-reduction scenarios

Reference scenarios

Scenario	Location	Capacity	
1A		60 MW (4 WT)	
2A	W of Barra	300 MW (20 WT)	
3A		1200 MW (80 WT)	
4A & 4W	& 4W & 5W SE of Gran Canaria & 6W*	60 MW (4 WT)	
5A & 5W		300 MW (20 WT)	
6A & 6W*		1200 MW (80 WT)	
7A & 7W	Morro Bay	60 MW (4 WT)	
8A & 8W		300 MW (20 WT)	
9A & 9W		1200 MW (80 WT)	

A: ActiveFloat, W: WindCrete, WT: wind turbine, (*): scenarios not fully analysed due to low power demand in the region and limited area with depths below 1000 m

Grid connection

Single string to onshore substation

5 strings to offshore substation, plus export cable to onshore substation

16 total strings to 2 offshore substations, plus export cables to onshore substation

Single string to onshore substation

5 strings to onshore substation

16 total strings to 2 offshore substations, plus export cables to onshore substation

Single string to onshore substation

5 strings to offshore substation, plus export cable to onshore substation

16 total strings to 2 offshore substations, plus export cables to onshore substation

Developments carried out to upgrade FowApp

principles

A new more comprehensive LCA model to find the floating wind technology with circular economy

Developments carried out to upgrade FowApp

A new and friendly interface for the user to introduce data and upgrade the LCOE model

Developing FowApp as a new desktop application with the following features:

- Built from scratch for the floating wind industry
- Import/export capabilities
- Integrated calculations
- Detailed Annual Energy Production calculation
- Economic analysis, including LCOE calculation
- Full LCA cradle-to-Grave approach

Baseline LCOE and LCA results

LCOE results

- ➤ The average LCOE of the 15 reference scenarios studied is 99.7 €/MWh
- The main drivers of the LCOE are the AEP and the CAPEX
- > The OPEX and DECEX have smaller impacts due to the discount rate used: 10%

Baseline LCOE and LCA results

LCA results in the carbon footprint indicator

ears EPBT

> The environmental results depend on each scenario, impact categories analysed and scenarios

Let's see the GHG emissions

CO₂ eq emissions << 20 gCO₂ eq/kWh

> The EPBT (Energy Payback Time) is the time required to generate as much energy as is consumed during the production and lifetime operation of the system

EPBT ranges 0.9 – 1.7 years

Baseline LCOE and LCA results

Results by life cycle stages for Gran Canaria (scenario 5W as an example) Substructure manufacturing by materials

Overall Life Cycle Results

Impact category	Slag	Unreinforced concrete	Steel	Energy for manufacturing	TOTAL
ADP elements [kg Sb eq/MWh]	8.08E-07	3.67E-06	8.95E-06	2.25E-11	1.34E-05
AP [kg SO ₂ eq/MWh]	4.90E-04	7.42E-04	4.08E-03	1.30E-07	5.31E-03
EP [kg PO4 eq/MWh]	1.41E-02	2.90E-04	2.52E-03	1.53E-08	1.69E-02
GWP [kg CO ₂ eq/MWh]	6.97E-02	3.81E-01	1.00E+00	6.66E-05	1.45E+00
PED [MJ/MWh]	2.78E+00	2.14E+00	1.52E+01	1.74E-03	2.01E+01
ATP [CTUe/MWh]	3.07E-04	1.30E-04	6.61E-04	1.14E-07	1.10E-03
HTP [CTUh/MWh]	2.32E-12	5.63E-12	1.59E-10	1.05E-14	1.67E-10

> Manufacturing is the dominant stage in the environmental overall LCA results

- > EoL stage brings benefits due to recycling credits in all environmental impact categories studied
- > The turbine has a greater impact than the floating substructure in almost all impact categories during the manufacturing stage, hence the importance to use concrete
- > Green steel should be used instead of steel in the substructure to reduce its impact since steel has the highest impact

Innovations and optimisations for cost reduction

Workshops and Surveys to identify Cost Reduction Opportunities (main outcomes)

	Main remarks from survey	Main remarks from workshop
Foundations	Concrete foundations are more easily scalable than steel ones and size and weight do not seem to be a limitation for upscaling their designs.	There is not much information available about energy consumption for manufacturing foundations, but source suggests that energy usage is more than 100 kWh/ton and 10 l/ton for a concrete semi-submersi
	While developers and suppliers believe that concrete foundations last for 40- 50 years, consultancies and certification bodies consider their lifetime to be 25 years	It's difficult to quantify the cost advantages of concrete foundations over steel ones, but qualitatively, concrete foundations require less increase for a large turbine compared to steel and can have a longer lifetime
Mooring and anchor system	Deepwater mooring systems have different technical challenges, but the most influential for the LCOE are installation and O&M strategy. Experts believe that manufacturing capabilities could be a bottleneck	The selection of anchors largely depends on the seabed.
		Designing shared mooring lines is not straightforward because the maximum load works in a main direct This means that some lines need to be able to stand higher loads and more fatigue over their lifetime
Dynamic Cables (Electrical system and installation)	Deepwater dynamic cables pose different technical challenges, but the most impactful for the LCOE is designed at the wind farm level. Experts are most concerned about the lack of dynamic export cables	66 kV is a good rating for inter-array but for export, a voltage higher than 132 kV might be a requiremen
		> In terms of failure, participants agree that inter-array is more likely to fail than export cable.

Main innovations and optimisations

- Layout optimisation
- WindCrete reuse
- Station system peak load reduction
- Improved maintenance strategies
- Windfarm control for life extension

Optimised LCOE and LCA results

corewind.eu

LCOE reduction

Optimised LCOE and LCA results

LCA results

14.9% 15.3% Primary energy demand reduction => 170 MJ/MWh

Acidification potential reduction $=> 0.0424 \text{ kg SO}_2$ eq./MWh

Aquatic toxicity potential reduction => 0.193

11.4%

CTUe/MWh

Main outcomes

Highlights:

- The LCOE optimisation leaded in some cases to a reduction of the energy yield due to the purchasing costs
- The layout optimisation and the maintenance improvements had the highest effect on the LCOE reduction
- All scenarios are below 20 gCO₂ eq/kWh (average of 11 gCO₂ eq/kWh)
- Optimising the LCOE resulted in significant reduction of the environmental impacts

Next steps / Topics that could be further investigated:

- and recyclable
- Improving turbine designs to increase efficiency and reduce costs
- Design new technologies for monitoring and controlling wind turbines remotely
- floating foundation and turbine which could cut installation costs by up to 50%

scale of floating wind farms

corewind

The average LCOE of reference scenarios studied is 99.7 €/MWh, that went down to 86.6 €/MWh after optimisation

Developing new materials for blades that can withstand harsh marine environments, reduce maintenance cost, be reusables

Developing new installation techniques that can reduce costs and minimize environmental impact, such as pre-assembly of

Continuously optimizing the layout design of floating offshore wind farms to maximize energy efficiency over a year

Analyse technical, statistical, organizational or market factors to establish the main parameters that influence the economies of

Beyond COREWIND

COREWIND comes forward with the low-cost scenario expected in 2025, which reflects what might be possible with greatly enhanced research, development and innovation

Figure 1. Experts anticipate substantial cost reductions for onshore, fixed-bottom offshore, and floating offshore wind power, but there is considerable uncertainty in those future costs. (Credit: Berkeley Lab)

FowApp is a practical and holistic tool that can be used to analyse LCOE and conduct LCA to give engineers and decision-makers insights into floating offshore wind farms

Contact: vjferreira@irec.cat

Thank you for your attention!

Development needs, Market status and exploitable results

Bernd Neddermann Senior Project Engineer UL DEWI

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Introduction

- Market assessment for floating offshore wind
- have been developed
- The following key results will be presented:
 - > Development needs
 - Market status
 - Exploitable results

Exploitable results were identified and recommendations for commercialization

Development needs

Objectives and activities

- Development needs have been identified from a holistic view, considering
 - Design practice
 - > Manufacturing and pre-assembling
 - > Transport and installation
 - > Operation and maintenance
- Focus on wind turbine, floater, mooring/anchoring and dynamic cables

Analysis is based on information from COREWIND experts and a review of publications

corewind.eu

FIA23FV/93272

Development needs

Design practice

- Optimized integrated designs General: Long-lasting design
- Wind turbine:
- **Floater:**
- **Dynamic cables:**
- **Mooring/Anchoring:** Floating-specific load characteristics Optimized combined/shared moorings
 - Optimization in terms of maximum excursion limits and bending stress Consider protection on seabed and loading at connection point

- Advanced control systems
- Fail-safe floater design solutions

corewind.eu

Development needs

Manufacturing and pre-assembling

Standardization and capacity for manufacturing/assembly

Transport and Installation (T&I)

- Customized T&I equipment and additional installation assets
- Solutions for work between multiple floating objects and for deep-water installation

Operation and Maintenance (O&M)

- Innovative concepts for large component replacements

• Cost and time efficient methods for O&M strategy with tow-in to harbor for repair

corewind.eu

Objectives and activities

- Floating offshore wind market
- Current commercial offerings
- Potential in main global markets
- Analysis is based on a review of publications

- To date, 190 MW of floating offshore wind capacity in operation
- Floating offshore wind turbine (FOWT) prototypes/pilot projects in the U.K., Norway, Portugal, France and in Japan and Mainland China
- A shift to semi-submersible floaters can be observed
- More than 80 floater concepts under development
- Huge investments from energy and oil companies
- First commercial-scale floating wind projects under development
- 60% (USA) to 80% (Europe, Japan) of wind resources in deep waters can be used by FOWT
- Potential also for green hydrogen production and for power supply of oil and gas platforms

Source: Floating Offshore Wind International Market Opportunities – FOW CoE/OWC, 06/2022

corewind.eu

*Compound Annual Growth Rate

Source: Global Offshore Wind Report 2022, GWEC 06/2022

corewind.eu

Objectives and activities

- Exploitable results were identified
- Recommendations for commercialization have been developed
- Analysis is based on information from COREWIND partners

SWOT analysis

Categories for Exploitable Results (ER)

- Products
- Processes
- Knowledge and intellectual property (IP)
- Services
- Other

#	Type of ER	Exploitable Result	#	Type of ER	Exploitable Result	
1	Product /Service	FOWAPP	16	Knowledge & IP	Limits of heavy-lift maintenance, large	
2	Product	DigitalTwin for FOWT	10		component exchange	
3	Product	Optimized mooring design – WindCrete	17	IP	Innovative shared mooring system	
4	Product	Optimized mooring design – ActiveFloat	18	Product	1st campaign of experimental tests related to	
5	Product	WindCrete 15MW			mooring and cable dynamics in COCOTSU flur	
6	Product	ACTIVEFLOAT floating structure			2nd campaign of experimental tests related t	
_	Product/	HAWC2 software new modelling capability:	19	Product	Integrated FOWT in Cantabrian Coastal and	
/	Software Feature	Floating Wind Farm Modeling			Deet practices and testing recommendations	
8	Product/Software	Open-Source Software	20 Service		experimental modelling of mooring and cable	
9	Product/Software	Software	20	Service	dynamics for FOWT	
10	Service O8	O&M planning and strategy tool 21	21	Service	Layout optimization algorithm	
			22	Product	Shared mooring lines and anchors	
11	Service	Refinement of certification process for FOWT	23	Product	Peak load reduction systems	
12	Service	Improved testing concept for FOWT	24	Service	Mooring optimization code	
13	Service	BIM model	25	Service	Monitoring system ROI	
14	Knowledge & IP	Floating Turbine wake Investigation	FOV	VAPP = Floating offsh	ore wind assessment App	
15	Knowledge & IP	Floating wind turbine Installation Modeling	HAV	HAWC2 = Horizontal axis wind turbine simulation code 2nd generation		
			COC	COTSU = Wave-current	-tsunami-flume	

corewind.eu

- (LCA) calculations
- 8 Services e.g., O&M planning and strategy tool
- 4 Knowledge and IP e.g., floating wind turbine installation modeling
- Product strategy and go-to-market-plan have been developed for selected ERs

13 Products – e.g., FowApp for Levelized Cost of Energy (LCOE) and Life Cycle Assessment

Go-to-market plan

Conclusion

- - Review of standards
 - > Design practice recommendations
 - > Development needs
 - Current FOWT projects and commercial offerings
 - > Potential in global markets
 - > Opportunities and threats
- been developed
- Publications are available on the COREWIND website

• A market assessment for floating offshore wind turbines is presented, including

• 25 Exploitable Results were identified and recommendations for commercialization have

Contact:

Thank you for your attention!

Bernd.Neddermann@UL.com info@corewind.eu

Join at slido.com #COREWIND

Time for questions!

Panel discussion: Similar objectives, different findings? **Discussion with AFLOWT and FLOATECH** projects

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Panel discussion: Similar objectives, different findings? Discussion with AFLOWT and FLOATECH projects

Speakers: Moderated by:

Lizet Ramirez Senior Analyst WindEurope

Mareike Leimeister Research Associate Fraunhofer IWES

Alessandro Bianchini Assistant Professor Università degli Studi di Firenze

Jose Luis Domínguez García Head of Power Systems Group IREC

nterreg EUROPEAN UNION North-West Europe AFLOWT

European Regional Development Fund

AN MARINE ENERGY CENTRE LTD

Energy for generations

Accelerating market uptake of **FL**oating Offshore Wind Technology

FLOATECH overview

- EU H2020 funding scheme
- RIA total budget of 4 M€
- 9 partners
 - 4 from academia
 - 4 from wind industry
 - 1 organizational partner
- Advisory board with 5 highly-reputed companies of the sector
- Project coordinator:
 - Prof. Christian Navid Nayeri (TU Berlin)

- FLOATECH «aims to develop advanced technologies and design tools to increase the level of maturity and improve the cost competiveness of FOWT technology»
- This will be pursued by means of **5 main actions**
 - 1. get a better insight into the *aerodynamics and hydrodynamics of FOWTs*
 - 2. model and reduce uncertainties in the design process through *advanced simulation tools,* mainly *open source*
 - explore *new concepts and techniques* through experiments and simulations 3.
 - increase the future *market value of floating wind energy* 4.
 - reducing *LCOE* 5.

Project structure

Development of QBlade-Ocean

of uncertainty reduction gained through QBlade-Ocean

wave-based control

IOWTC Conference 06/12/22

Mixing for floating wind farm

market value evaluation of proposed technologies and scale up

Communication & Exploitation

Project Management

What's next? Possible future for **COREWIND** solutions Jose Luis Domínguez García Head of Power Systems Group IREC - Institut de Recerca en Energia de Catalunya

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Closing remarks

Scan the QR code to find all the results of the COREWIND project

> Any question? Contact us at: info@corewind.eu

> And follow us on social media! @corewindeu

in

corewind.eu

Time for a picture!

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

Join us for a networking lunch!

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

