Innovations in integrated floating offshore wind systems

Time	Presenter	
15:00-	Sabina Potestio,	
15:05	WindEurope	
15:05-	Lizet Ramirez,	
15:10	WindEurope	
15:10-	Jose Luis Dominguez,	
15:20	IREC	
15:20-	Mohammad Youssef	
15:30	Mahfouz, University of	
	Stuttgart and Climent	
	Molins, UPC	
15:30-	Valentin Arramounet,	
15:40	Innosea	
15:40-	Marie-Antoinette	
15:50	Schwarzkopf, Ramboll	
15:50-	Jose I. Rapha, IREC	
16:00		
16:00-	Pablo Necochea, Vestas	
16:10		
16:10-	Sabina Potestio,	
16:30	WindEurope	

Agenda

Topic

Introduction

Sate of play of EU offshore policy

Introduction to Corewind

A FAST model of the UPC concrete spar floater and the 15 MW IEA WIND reference turbine

Optimized mooring system for the ActiveFloat concrete semisub floater for the 15 MW IEA WIND reference wind turbine

O&M for commercial scale floating wind -Opportunities for maintenance strategies

Presentation on the LCOE evaluation tool FOWApp

Floating offshore wind innovations for cost reduction

Q&A

Press + to expand the question box

Type your question and hit 'Send'

Got a question?

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

FLOATING WIND TECHNOLOGY

Sate of play of EU offshore policy

25 February 2021

corewind.eu

Lizet Ramírez Analyst, Offshore Wind

Europe is leading the floating wind movement

Windfloat Atlantic

24 MW Portugal

-

The Offshore Renewable Energy Strategy: Focus on scale-up

(

corewind

Released on November 19, 2020

Europe needs both floating and fixedbottom offshore wind

30% Floating

Floating Offshore Wind about to take off

2022

2020

corewind.eu

2030

Delivering the right offshore framework

- 1. Clear auction timetable
- 2. Technology-specific auctions
- 3. Contracts for Difference
- 4. One-stop shop for permitting
- 5. Private/Public grid development
- 6. Ensure happy co-existence

Delivering the right offshore framework

Policies

Supply Chain

Floating wind scale-up

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

COST REDUCTION OF FLOATING WIND TECHNOLOGY

Introduction to Corewind

25 February 2021

corewind.eu

Dr. Jose Luis Domínguez-García COREWIND coordinator

Project partners and advisory board

Project objectives

COREWIND looks beyond the state of the art of the floating technology with the aim of accelerating the path towards its commercial deployment by developing and validating innovative and costeffective solutions that allows to solve the most critical barrier of floating offshore wind technology, the cost.

Project approach

Development of innovative cost-effective and reliable solutions

Mooring & dynamic cable design optimization

Standardization and certification

O&M planning & assessment tools

ES ~ SE 5 \sim

Open data and models available

Novel mooring and anchoring designs

Optimized mooring and power cable designs

Concrete-based semisub & spar prototypes at TRL 5

Explotation plan for innovations

Guidelines and Best Practices

Project expected impacts and outcomes

Advanced tools (DIGITALIZATION)		
• Reference models:		
015 MW WT reference model		
02 floater (semi-sub & spar) models		
 Design and operation tools: 		
o1 BIM toolbox for floating wind industry		
01 Open and agnostic Digital Twin for floating wind		
01 O&M planning and assessment tool		
• Economic tools:		
o1 LCOE and LCA calculation tool		
oFloating Wind Farm optimization modules for		
minimization		
Key reference documents:		
• Technologies State of the art		
• Standards revision:		
• Development guidelines		
• Testing and design procedures recommendations.		

corewind.eu

cost

Current outcomes and developments M18 M42 03/2023 03/2021 • Reference models: 015 MW WT reference model o2 floater (semi-sub & spar) models • Economic tools: ol LCOE and LCA calculation tool • Number of public deliverables: • Several reports have been made available

Current outcomes and developments

• Public Deliverables:

• They can be found at: http://corewind.eu/publications/

- □ D6.1: General frame of the analysis and description of the new FOW assessment app
- identification of relevant DLC
- □ D3.1: Review of the state of the art of dynamic cable system design
- **D**1.2: Design Basis
- □ D1.1: Definition of the 15MW reference wind turbine

• Public models (available under different CC licenses):

https://zenodo.org/communities/corewind/?page=1&size=20

□ UPC-WindCRETE OpenFAST – Grand Canary Island • COREWIND - ACTIVEFLOAT OpenFAST model 15 MW FOWT Grand Canary Island site

• Other locations to come soon

D4.1: Identification of floating-wind-specific O&M requirements and monitoring technologies □ D2.1: Review of the state of the art of mooring and anchoring designs, technical challenges and

Join the conversation HCOREWIND

Stay tuned and follow us for updates https://twitter.com/corewindeu https://www.linkedin.com/company/corewi

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

FLOATING WIND TECHNOLOGY

Supported by:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

FLOATING WIND TECHNOLOGY

Introduction to the OpenFAST model of the WindCrete spar floater

25 February 2021

corewind.eu

Climent Molins Professor UPC Mohammad Youssef Mahfouz *Researcher USTUTT*

WindCrete concept

Integrated concept of an offshore wind floating platform plus tower to support the wind turbine, without any joint.

Made of reinforced and posttensioned concrete.

Spar type platform (ballast stabilized)

WindCrete ballast

-Bulk-specific weight: 25kN/m³

-Estimated cost: €35/ton

Ballast aggregate: black slag from electrical furnace

Construction in horizontal position

With or without drydock

Horizontal transport with tugboat

Up ending: - Water ballasting - Dynamic control

Turbine installation with a crane-less technology

25m 50m

0

Monolithic concrete platform (buoy + tower) without joints

Variable Draft (80 m – 160 m)

Operational depth (100 m to >1000 m)

windcrete Spar buoy

Adaptative design, able to support wind turbines up to 15 MW

Reduced OPEX

Low cost reduced CAPEX

Life-span >50 years

Reduced LCOE

WindCrete design for Gran Canaria

- Monolithic spar design
- Draft 155m
- Hub height 135m
- Tower:
 - Height: 129.5m
 - Radius: 6.6m->3.25m
 - Thickness: 0.4m
- Buoy
 - (semi-sphere + cylinder + transition piece)
 - Draft: 155m
 - Radius: 9.3m->6.6m
 - Thickness: 0.5m

-6.500.40 -129.495 MSL-13.20 → 10.0 18.60 135.7 155.0 44.15 9.3

Natural frequencies

PtfmPitch [deg] -2 -6 -8 0 1000 500 1500 time [s]

Heave	Pitch	Yaw
)31	0.024	0.092
.8	41.0	10.9

6

4

• The WindCrete model is opensource and available at: https://zenodo.org/record/4322446

 More details about the floater and its performance can be found in

https://zenodo.org/record/4385727

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

FLOATING WIND TECHNOLOGY

Optimized mooring system for the ActiveFloat concrete semisub floater for the 15 MW IEA WIND reference wind turbine 25 February 2021

corewind.eu

Valentin Arramounet Innosea

Mooring design optimisation methodology

- Constraints: criteria satisfied & limited motions/acceleration
- Design parameters (diameters, line length, steel grade, etc.)

- Environmental conditions
- Mooring configuration (Number of Lines, Materials, Number of Sections, etc.)
- Parameters configuration (Boundaries, Initial Values, etc.)

- Model set up
- Design criteria verification
- Motions (excursions & angles) & accelerations calculations
- Costs estimation

Cases studies

- DLC 6.1 and 6.2 (DNVGL-ST-0437)
- Start of Life and End of Life configuration

Water Depth [m]

EWM Wind Speed at 100m 10min averaged [r

Wind current speed 50 years @ surface [m/s]

Deep Water current speed 50 years @ surface

Hs 50years [m]

Tp min 50 years [s]

Tp max 50 years [s]

Mooring systems are checked in ULS, FLS and ALS in a second step

	West of Barra	Gran Canaria	Morro Bay
	100	200	870
m/s]	47.63	27.35	35.38
	1.15	0.57	0
e [m/s]	0.94	0.49	0
	15.6	5.11	9.9
	12	9	16
	18	11	18

Results: Gran Canaria

- 3 Lines Catenary
- Upwind: 832m Chain R3 120mm bar diameter 286 kg/m
- Downwind: 832m Chain R3 70mm bar diameter 97 kg/m
- Estimated cost: 865 k€ (- 60% VS initial configuration)

Results: West of Barra

- 12 Lines Catenary: 6 lines upwind & 3 lines downwind
- Upwind:
 - > 90m Nylon
 - > 1300m Chain R5 125mm bar diameter – 310 kg/m
 - Clump weights (Harsh conditions)
- Downwind
 - ➤ 150m Nylon
 - > 1200m Chain R5 125mm bar diameter – 310 kg/m
 - Clump weights
- Estimated cost: 14800 k€ !! corewind

Results: Morro Bay

- 3 Lines Semi Taut
- Upwind:
 - > 50m top / 142m bottom Chain R4S - 92mm bar diameter – 168 kg/m
 - ➢ 810 m − Polyester − 141mm
- Downwind:
 - > 50m top / 130m bottom Chain R4 - 90mm bar diameter - 161 kg/m
 - ➢ 722 m − Polyester − 126mm
- Estimated cost: 634 k€ (-55% VS rightial configuration) corewind

Comparisons

- Gran Canaria ➢ Optimised cost: 865 k€ Initial cost: > 2156 k€ for grade R3 > 3161 k€ for grade R5
- design criteria
- Morro Bay ➢ Optimised cost: 634 k€ Initial cost: 1399 k€

• West of Barra: No comparison as initial mooring is not fullfilling

Ongoing work

 Peak load reduction systems Peak loads reduction Fatigue reduction

Shared anchors and mooring lines

——— Spring 15m Spring 30m

"My experience with seasickness is that at first you are afraid you will die, then after a few hours you are afraid you will not. "

G. Yancey Mebane, M.D.

Workability Assessment

Further developed methodology to determine the Workability Index¹ for the floating wind turbine in accordance with ISO 2631-1:1997-"Evaluation of human exposure to wholebody vibration".

¹ Scheu et al., 2018. *Human exposure to motion during maintenance* on floating offshore wind turbines. Ocean Engineering.

Interviewed External Stakeholders

Including one offshore wind turbine OEM (anonymous).

All findings published in:

"Identification of floating-wind-specific O&M requirements and monitoring technologies"

Download link: http://corewind.eu/publications/

X AMPELMANN

windpark®

BRIDO BEKAERT ROPES GROUP

Deliverable D4.1

O&M Focus Areas

Workability

Accessibility

Mooring Lines

Subsea Inspections

Accessibility challenges

- Prevailing swell waves for sites in Atlantic Ocean challenge Hs-limits of access systems
- **Increased Relative motions** between vessel and platform
- Maintenance friendly design

corewind.eu

Source: Van Der Tempel, J. et al. 2016

Large Component Exchange

- Distance
- Harbor capacity
- Cable and Mooring Line deand reconnection
- Substructure type

Floating to Floating

- Exchange performed on same reference system as crane

• Relative motions

Two-lift operation

rane climbing Self-hoisting

- Development for Offshore ongoing
- Crane base hosted from floater platform
- Reduced relative motions for lift

Mooring Lines

ROVs used for visual damage inspection & marine growth measurement

External threats : fishing nets, boats, seabed contact, ROV collision

Difficult to justify **sample population** of mooring line inspections.

Wet-storage of mooring line during floater-towin problematic for fibre rope:

- Dynamic seabed contact causes abrasion
- Retrieval operations and re-installation are expensive

Hybrid ropes (steel and fibre combination) increase robustness

corewind.eu

5

Outlook O&M Task 4.2

Evaluation of relative motions and compensation requirements for:

- 1. Two access methods simulating bow-transfer with a CTV and walk-to-work from an SOV
- 2. Two substructure concepts with generic semi-sub and mono-hull crane vessel

optimisation tool Shoreline.

scenario.

- Simulation of the O&M phase with the commercial cost modelling and strategy
- Optimizing Resources, Availability and OPEX for each reference site and floater

Supported by:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

COST REDUCTION OF **FLOATING WIND TECHNOLOGY**

Introducing FowApp

February 2021

José I. Rapha **Research Engineer at IREC**

What is FowApp?

AEP: Annual Energy Production

Project

- Environment and components selection
- Layout definition
- Electrical connection definition

- Development
- Construction
- Operation and maintenance
- Decommissioning and end of life

Results details

- Energy produced, delivered and loss details
- Detailed wake and subsystems efficiencies
- Capacity factor

CCC

- Detailed costs by phase
- Analysis per component and per process
- Time-based maintenance costs.

LCOE

- Summary of energy
- delivered
- Summary of costs
- LCOE calculation
- LCOE
 contribution
 per phase

- Impact of components
- Impact of the auxiliary means
- Effect of the end of life treatment
- Summarised results

Highlights

Features

- ✓ Built from scratch specifically for the floating wind industry
- ✓ Possibility to import data from MS Excel
- ✓ Data consistently stored in SQLite database
- ✓ Integrated power flow and wake calculations
- ✓ Full project overview

+User friendly user needs

analysis

Advantages

- +Variable level of input details as per
- +Multiple substation concepts allowed
- +Dependable results
- +Combined economic and environmental
- +Identification of aspects to improve

Applications

- Early project development Technology assessment
- Environmental impacts evaluation
- Performance analysis

Screenshots

📣 FowApp - Layout (Goite de Fos)

Project: Menorca

Wind farm capacity: 80 MW

Availability rate 95 %				
	Location	Menorca frm		
Lifetime 30 years	Average depth	200 m		
	Distance from shore	23 km		
	Prevailing wind direction	NW		
Economic parameters				
	Average wind speed	10 m/s @ 100 m		
LCOE discount rate 3 %				
	Wind turbine	DTU 10MW RWT	Substations	Count
EoL landfill charge 99 €/t	Rated power	10.0 MW	Onshore substation	
	Count	8 turbines		
	L			
EoL incineration charge 111 €/t				
	Substructure	Ideol (concrete)		
	Туре	Barge		
	Draft	23 m	Grid	Voltage [kV] Current
	Tower	Included in substructure	Inter-array	33 AC
	Mooring	SUpermooring		
	Туре	Wire rope		
		<u>'Summar</u>	Cable	Length [km]
			AC 33 ACME	19.8
	Anchor	Strong anchor	Random cable	6.6
	Туре	Drag embedment	<total></total>	26.4
	Count	24 anchors		

19.84 6.61

26.45

📣 FowApp: Menorca

—

□ **∧**

corewind.eu

____ X 95

—

X

_

-	
es	
nergy	

corewind.eu

Commercial deployment: end of 2021

First use in the COREWIND project

Official testing: March 2021

LCA module being finished

App under registration process

Join the conversation HCOREWIND

Stay tuned and follow us for updates https://twitter.com/corewindeu https://www.linkedin.com/company/corewi

Disclaimer:

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 815083.

Project details:

Duration: 1 Sep 2019 - 28 Feb 2023 Grant agreement: No: 815083

FLOATING WIND TECHNOLOGY

